??藥劑學是一門有著悠久歷史的學科,中國很早以前對藥品就有“丸散膏丹,神仙難辨”的諺語,其中的“丸散膏丹”指的就是不同的藥物制劑劑型。在中國早期的醫(yī)學和藥學著作如《針灸甲乙經(jīng)》、《黃帝內經(jīng)》、《金匱要略》等中都有關于藥物劑型和療效關系的記載。中國早期藥物的主要劑型有:湯劑、酒劑、餅劑、曲劑、洗浴劑、丸劑、膏劑等不同類型。
??
古代近東地區(qū)的古埃及和古巴比倫遺留下來的,著錄于公元前十六世紀的《伊伯氏紙草本》是古代近東地區(qū)藥劑學的重要著作,收錄有散劑、膏劑、硬膏劑、丸劑、印模片劑、軟膏劑等多種劑型,此外還收錄了制劑處方,生產工藝和用途等重要信息。
??
歐洲藥劑學起始于公元一世紀前后,羅馬籍希臘人,被歐洲各國譽為藥劑學鼻祖的格林在他的專著中著錄了散劑、丸劑、浸膏劑、溶液劑、酊劑、酒劑,人們稱之為格林制劑,其中很多劑型至今仍在一些國家應用。
隨著十九世紀以來西方機械文明的發(fā)展,大量制藥機械產生,藥物制劑的生產工藝發(fā)生巨大的變化,藥劑學作為一門專門學科從原來的藥物學中獨立出來,同時藥劑學的研究范圍也突破了格林制劑的范圍,不斷地擴展。
??
進入二十世紀醫(yī)學、生命科學和其他相關基礎科學的飛速發(fā)展,藥劑學發(fā)生了翻天覆地的變化:在基礎理論方面,20世紀50年代,物理化學尤其是非平衡態(tài)物理化學的一些理論被應用在藥劑學領域,產生了一些藥劑學基本理論如藥物穩(wěn)定性理論、溶解理論、流變學、粉體學等,在藥物新劑型方面,產生了緩控釋制劑、被動靶向制劑、主動靶向制劑等新劑型,給藥途徑也由原來單一的口服給藥和注射給藥,擴展到了粘膜給藥、透皮吸收給藥等多種途徑;在藥物應用方面,產生了一個全新的分支學科:臨床藥學,將原來簡單的“醫(yī)護”概念擴展為配合全程藥學監(jiān)護的“醫(yī)藥護”概念。
??
。
微積分的歷史和起源?
??極限和微積分的概念可以追溯到古代。到了十七世紀后半葉,牛頓和萊布尼茨完成了許多數(shù)學家都參加過準備的工作,分別獨立地建立了微積分學。他們建立微積分的出發(fā)點是直觀的無窮小量,理論基礎是不牢固的。直到十九世紀,柯西和維爾斯特拉斯建立了極限理論,康托爾等建立了嚴格的實數(shù)理論,這門學科才得以嚴密化。
??
微積分是與實際應用聯(lián)系著發(fā)展起來的,它在天文學、力學、化學、生物學、工程學、經(jīng)濟學等自然科學、社會科學及應用科學個分支中,有越來越廣泛的應用。特別是計算機的發(fā)明更有助于這些應用的不斷發(fā)展。
微積分學是微分學和積分學的總稱。
客觀世界的一切事物,小至粒子,大至宇宙,始終都在運動和變化著。
??因此在數(shù)學中引入了變量的概念后,就有可能把運動現(xiàn)象用數(shù)學來加以描述了。
由于函數(shù)概念的產生和運用的加深,也由于科學技術發(fā)展的需要,一門新的數(shù)學分支就繼解析幾何之后產生了,這就是微積分學。微積分學這門學科在數(shù)學發(fā)展中的地位是十分重要的,可以說它是繼歐氏幾何后,全部數(shù)學中的最大的一個創(chuàng)造。
??
微積分學的建立
從微積分成為一門學科來說,是在十七世紀,但是,微分和積分的思想在古代就已經(jīng)產生了。
公元前三世紀,古希臘的阿基米德在研究解決拋物弓形的面積、球和球冠面積、螺線下面積和旋轉雙曲體的體積的問題中,就隱含著近代積分學的思想。
??作為微分學基礎的極限理論來說,早在古代以有比較清楚的論述。比如我國的莊周所著的《莊子》一書的“天下篇”中,記有“一尺之棰,日取其半,萬世不竭”。三國時期的劉徽在他的割圓術中提到“割之彌細,所失彌小,割之又割,以至于不可割,則與圓周和體而無所失矣。
??”這些都是樸素的、也是很典型的極限概念。
到了十七世紀,有許多科學問題需要解決,這些問題也就成了促使微積分產生的因素。歸結起來,大約有四種主要類型的問題:第一類是研究運動的時候直接出現(xiàn)的,也就是求即時速度的問題。第二類問題是求曲線的切線的問題。
??第三類問題是求函數(shù)的最大值和最小值問題。第四類問題是求曲線長、曲線圍成的面積、曲面圍成的體積、物體的重心、一個體積相當大的物體作用于另一物體上的引力。
十七世紀的許多著名的數(shù)學家、天文學家、物理學家都為解決上述幾類問題作了大量的研究工作,如法國的費爾瑪、笛卡爾、羅伯瓦、笛沙格;英國的巴羅、瓦里士;德國的開普勒;意大利的卡瓦列利等人都提出許多很有建樹的理論。
??為微積分的創(chuàng)立做出了貢獻。
十七世紀下半葉,在前人工作的基礎上,英國大科學家牛頓和德國數(shù)學家萊布尼茨分別在自己的國度里獨自研究和完成了微積分的創(chuàng)立工作,雖然這只是十分初步的工作。他們的最大功績是把兩個貌似毫不相關的問題聯(lián)系在一起,一個是切線問題(微分學的中心問題),一個是求積問題(積分學的中心問題)。
??
牛頓和萊布尼茨建立微積分的出發(fā)點是直觀的無窮小量,因此這門學科早期也稱為無窮小分析,這正是現(xiàn)在數(shù)學中分析學這一大分支名稱的來源。牛頓研究微積分著重于從運動學來考慮,萊布尼茨卻是側重于幾何學來考慮的。
牛頓在1671年寫了《流數(shù)法和無窮級數(shù)》,這本書直到1736年才出版,它在這本書里指出,變量是由點、線、面的連續(xù)運動產生的,否定了以前自己認為的變量是無窮小元素的靜止集合。
??他把連續(xù)變量叫做流動量,把這些流動量的導數(shù)叫做流數(shù)。牛頓在流數(shù)術中所提出的中心問題是:已知連續(xù)運動的路徑,求給定時刻的速度(微分法);已知運動的速度求給定時間內經(jīng)過的路程(積分法)。
德國的萊布尼茨是一個博才多學的學者,1684年,他發(fā)表了現(xiàn)在世界上認為是最早的微積分文獻,這篇文章有一個很長而且很古怪的名字《一種求極大極小和切線的新方法,它也適用于分式和無理量,以及這種新方法的奇妙類型的計算》。
??就是這樣一片說理也頗含糊的文章,卻有劃時代的意義。他以含有現(xiàn)代的微分符號和基本微分法則。1686年,萊布尼茨發(fā)表了第一篇積分學的文獻。他是歷史上最偉大的符號學者之一,他所創(chuàng)設的微積分符號,遠遠優(yōu)于牛頓的符號,這對微積分的發(fā)展有極大的影響。現(xiàn)在我們使用的微積分通用符號就是當時萊布尼茨精心選用的。
??
微積分學的創(chuàng)立,極大地推動了數(shù)學的發(fā)展,過去很多初等數(shù)學束手無策的問題,運用微積分,往往迎刃而解,顯示出微積分學的非凡威力。
前面已經(jīng)提到,一門科學的創(chuàng)立決不是某一個人的業(yè)績,他必定是經(jīng)過多少人的努力后,在積累了大量成果的基礎上,最后由某個人或幾個人總結完成的。
??微積分也是這樣。
不幸的事,由于人們在欣賞微積分的宏偉功效之余,在提出誰是這門學科的創(chuàng)立者的時候,竟然引起了一場悍然大波,造成了歐洲大陸的數(shù)學家和英國數(shù)學家的長期對立。英國數(shù)學在一個時期里閉關鎖國,囿于民族偏見,過于拘泥在牛頓的“流數(shù)術”中停步不前,因而數(shù)學發(fā)展整整落后了一百年。
??
其實,牛頓和萊布尼茨分別是自己獨立研究,在大體上相近的時間里先后完成的。比較特殊的是牛頓創(chuàng)立微積分要比萊布尼詞早10年左右,但是整是公開發(fā)表微積分這一理論,萊布尼茨卻要比牛頓發(fā)表早三年。他們的研究各有長處,也都各有短處。那時候,由于民族偏見,關于發(fā)明優(yōu)先權的爭論竟從1699年始延續(xù)了一百多年。
??
應該指出,這是和歷史上任何一項重大理論的完成都要經(jīng)歷一段時間一樣,牛頓和萊布尼茨的工作也都是很不完善的。他們在無窮和無窮小量這個問題上,其說不一,十分含糊。牛頓的無窮小量,有時候是零,有時候不是零而是有限的小量;萊布尼茨的也不能自圓其說。
??這些基礎方面的缺陷,最終導致了第二次數(shù)學危機的產生。
直到19世紀初,法國科學學院的科學家以柯西為首,對微積分的理論進行了認真研究,建立了極限理論,后來又經(jīng)過德國數(shù)學家維爾斯特拉斯進一步的嚴格化,使極限理論成為了微積分的堅定基礎。才使微積分進一步的發(fā)展開來。
??
任何新興的、具有無量前途的科學成就都吸引著廣大的科學工作者。在微積分的歷史上也閃爍著這樣的一些明星:瑞士的雅科布·貝努利和他的兄弟約翰·貝努利、歐拉、法國的拉格朗日、科西……
歐氏幾何也好,上古和中世紀的代數(shù)學也好,都是一種常量數(shù)學,微積分才是真正的變量數(shù)學,是數(shù)學中的大革命。
??微積分是高等數(shù)學的主要分支,不只是局限在解決力學中的變速問題,它馳騁在近代和現(xiàn)代科學技術園地里,建立了數(shù)不清的豐功偉績。
微積分的基本內容
研究函數(shù),從量的方面研究事物運動變化是微積分的基本方法。這種方法叫做數(shù)學分析。
本來從廣義上說,數(shù)學分析包括微積分、函數(shù)論等許多分支學科,但是現(xiàn)在一般已習慣于把數(shù)學分析和微積分等同起來,數(shù)學分析成了微積分的同義詞,一提數(shù)學分析就知道是指微積分。
??微積分的基本概念和內容包括微分學和積分學。
微分學的主要內容包括:極限理論、導數(shù)、微分等。
積分學的主要內容包括:定積分、不定積分等。
微積分是與應用聯(lián)系著發(fā)展起來的,最初牛頓應用微積分學及微分方程為了從萬有引力定律導出了開普勒行星運動三定律。
??此后,微積分學極大的推動了數(shù)學的發(fā)展,同時也極大的推動了天文學、力學、物理學、化學、生物學、工程學、經(jīng)濟學等自然科學、社會科學及應用科學各個分支中的發(fā)展。并在這些學科中有越來越廣泛的應用,特別是計算機的出現(xiàn)更有助于這些應用的不斷發(fā)展。